Information Geometry of Positive Matrices and Isospectral Flow

نویسندگان

  • Naoki Maeji
  • Shun-ichi Amari
چکیده

A di erential-geometric structure of the manifold PD(n) of all the n n positive-de nite matrices is studied by means of informatin geometry. It is given by a pair of dual at a ne connections with an invariant Riemannian metric and a divergence function. Special attention is paid to the geometry induced in the isospectral submanifolds and the natural gradient ow induced in it. Its relation to the Brockett ow, which is related to a completely integrable dynamical system, is elucidated from the point of view of information geometry. It is interesting to remark that intrinsic relations exist among inner methods of optimization and analysis, completely integrable dynamical systems and dually at information geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isospectral Flows for Displacement Structured Matrices

This paper concernes eigenvalue computations with displacement structured matrices, for example, Toeplitz or Toeplitz-plus-Hankel. A technique using isospectral flows is introduced. The flow is enforced to preserve the displacement structure of the originary matrix by means of a suitable constraint added in its formulation. In order to fulfil the constraint, the numerical integration of the flo...

متن کامل

Singular-Value Decomposition via Gradient and Self-Equivalent Flows

The task of finding the singular-value decomposition (SVD) of a finite-dimensional complex Iinear operator is here addressed via gradient flows evolving on groups of complex unitary matrices and associated self-equivalent flows. The work constitutes a generalization of that of Brockett on the diagonalization of real symmetric matrices via gradient flows on orthogonal matrices and associated iso...

متن کامل

Semi-explicit methods for isospectral flows

In this paper we propose semi-explicit schemes based on Taylor methods for the solution of the isospectral equation L′ = [B,L] for d × d real matrices L, while reproducing the isospectrality of the exact equation. Although the theoretical solution may be symmetric, the proposed schemes usually do not retain symmetry of the underlying flow. We present techniques that allow us to decrease the bre...

متن کامل

Isospectral Flows and Abstract Matrix Factorizations * Moody T . Chu ? and Larry

A general framework for constructing isospectral flows in the space gl(n) of n by n matrices is proposed. Depending upon how gl(n) is split, this framework gives rise to different types of abstract matrix factorizations. When sampled at integer times, these flows naturally define special iterative processes, and each flow is associated with the sequence generated by the corresponding abstract f...

متن کامل

Spectral Distributions and Isospectral Sets of Tridiagonal Matrices

We analyze the correspondence between finite sequences of finitely supported probability distributions and finite-dimensional, real, symmetric, tridiagonal matrices. In particular, we give an intrinsic description of the topology induced on sequences of distributions by the usual Euclidean structure on matrices. Our results provide an analytical tool with which to study ensembles of tridiagonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996